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A method of numerically integrating the Navier-Stokes equations for certain 
three-dimensional incompressible flows is described. The technique is presented 
through application to the particular problem of describing thermal convection 
in a rotating annulus. The equations, in cylindrical polar co-ordinate form, are 
integrated with respect to time by a marching process, together with the solving 
of a Poisson equation for the pressure. A suitable form of the finite difference 
equations gives a computationally-stable long-term integration with reasonably 
faithful representation of the spatial and temporal characteristics of the flow. 

Trigonometric interpolation techniques provide accurate (discretely exact) 
solutions to the Poisson equation. By using an auxiliary algorithm for rapid 
evaluation of trigonometric transforms, the proportion of computation needed 
to solve the Poisson equation can be reduced to less than 25 yo of the total time 
needed to advance one time step. Computing on a UNIVAC 1108 machine, the 
flow can be advanced one time-step in 2 sec for a 14 x 14 x 14 grid upward to 96 sec 
for a 60 x 34 x 34 grid. 

As an example of the method, some features of a solution for steady wave flow 
in annulus convection are presented. The resemblance of this flow to the classical 
Eady wave is noted. 

1. Introduction 
The object of this paper is to discuss some of the problems of employing the 

full Navier-Stokes equations in studying viscous, incompressible, three-dimen- 
sional fluid flows. These problems are largely connected with the deduction of 
a stable and rational means for numerically integrating these equations. In  
general, it  appears that there have been difficulties occurring in computational 
speed, stability, accuracy or treatment of boundary conditions. The particular 
system of equations and the domain of integration to be discussed have been 
designed in essence for the study of thermal convection in a rotating annulus. 
However, the physical considerations do not directly or crucially bear on the 
establishing of a stable mathematical hydrodynamic framework and the 
method possesses a certain generality. The method can be directly reduced to 
apply to (i) the Cartesian system; (ii) non-rotating flow; (iii) isothermal flow; 
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(iv) two-dimensional flow, or combinations of these. For more complex systems 
of flow only some aspects of the method are applicable. 

Among the main requirements determining the design of the mathematical 
framework are that it should represent both the temporal and spatial distribu- 
tions as faithfully as possible. Furthermore, the prediction equations should 
closely resemble the true Navier-Stokes equations in order that the computed 
flow evolution might follow that of the true fluid. It is convenient therefore to 
work with the basic equations in fundamental velocity-pressure form. However, 
it is computationally desirable to solve a Poisson equation for the pressure p in 
order to reduce the amount of computation. The Poisson procedure filters out 
unimportant external gravity waves and, although it implies that the pressure 
adjusts instantaneously to flow changes, the assumption is not physically restric- 
tive for the flow under consideration. 

The only mathematical methods available at  present for dealing with the full 
non-linearity and diffusivity of the Navier-Stokes equations are those using 
finite difference methods or finite representation by means of truncated Fourier 
spectra. The spatial differencing methods derived from the ideas of Arakawa 
(1966) have reached a level of development that provides most of the advantages 
of the spectral method whilst avoiding the latter’s disadvantages in representing 
non-linear interactions and its restriction to simple geometries. Such a finite 
difference scheme will be presented in this paper. 

In designing the finite difference equations, the well-known centred differencing 
is chosen for the time gradients. Such a system produces less non-physical dis- 
tortion of the flow transients than do other methods, particularly some iterative 
methods (Kurihara 1965). We are assuming that we are interested in the time 
dependent part of the flow so that such distortion would be undesirable even 
though it could make the computation faster. 

The physical aspect of the problem of annulus convection is well known and 
details may be obtained by consulting Williams (1967). 

2. The continuous equations 
Consider a fluid contained between two coaxial cylinders of inner and outer 

radii a, b respectively and two parallel horizontal planes a distance d apart 
(figure 1). The container rotates with respect to an inertial system at a constant 
rate 8, where the rotation vector, anti-parallel to gravity g, coincides with the 
axis of the cylinders. Motion is measured relative to the solid rotation in cylindri- 
cal co-ordinates r,  g5, z based on the axis, r being radial and z vertical. The velocity 
components are u, v, and w in the zonal, radial and vertical directions respec- 
tively.? 

The fluid is thermally driven away from a state of solid rotation by an imposed 
horizontal temperature gradient A T  i.e. the inner and outer cylinders are held 
at  different constant temperatures T, and Tb. The base is thermally insulated and 
the upper surface of the fluid ( x  = d )  behaves the same way owing to the presence 
of a lid (not in contact) inhibiting interaction with the overlying air. 

t This is not standard notation. 
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Along with making the Boussinesq approximation, we assume for convenience 
that the kinematic viscosity v and the thermometric conductivity K are constant 
and that the centrifugal acceleration is much smaller than the gravitational 
acceleration, i.e. CP(ct+b)/2g < 1. As a consequence the upper surface can be 
taken to be of constant height and the free-slip rigid lid condition can be used 
for this surface. 

The above assumptions only slightly modify the physical problem but offer 
convenient mathematical simplification without compromising the essential 
nature of the Navier-Stokes equations. Upon writing the hydrostatic pressure 
deviation as 7~ = PIP,,, and the temperature deviation as T ,  the Navier-Stokes 
equations may be expressed in the following form: 

- = -n,+vIqv)+ 

2 = 

Dv 
Dt 

Dt r 

Dw/Dt = -nz+ uH(w) +/3gT, (3)  

FIGURE 1. Configuration of the system for which the method is described. 

with the heat transfer equation as 

DTIDt = K V ~ T ,  

and the equation of mass conservation as 

(rv), +a$ + rw, = 0 ,  

where 



730 G. P. Williams 

In order to satisfy the continuity equation, it is convenient to derive an equation 
for the pressure from (l), (2) and (3). To obtain this, write the above equations of 
motion in convenient vector form 

(10) 
av 
at 
-+ v . V V +  2 Q  A V = -Vn+&T - VV A 0, 

where w = V A v is the vorticity and write the continuity equation in divergence 
9 form 

The divergence of (10) 

( a 9 / a t )  = - [ V 2 ~ - B g T z - 2 Q w + V . ( ~ . V ~ ) ] ,  (12) 

is a,n equation for the prediction of 9. To maintain t,he incompressible continuity 
9 = O , ~ T  must satisfy the right member of (12) set to zero. This condition can be 
expressed as V2n = V.  G, 

where G are the components (inertia terms, etc.) of the prediction equations. 
The boundary conditions for (13) are that 

(13) 

T, = GIL; (14) 

i.e. the normal pressure gradients must equal the component terms of the normal 
velocity equation on each boundary. The index n represents the  variables r or 
2. In  the $-direction the condition is that the flow be periodic. 

Equation (13) is of an elliptic type, denoted say as 

p ( n )  = Q ,  (15) 

A(%-) = BC, 

and is subject to inhomogeneous Neumann boundary conditions which we 
denote as 

where 9 and ~ 2 ’  are linear differential operators. The principle behind solving 
such a system is to reduce the problem to one with homogeneous boundary con- 
ditions (see e.g. Lanczos 1961, p. 435). To do this let no be any reasonable function 
satisfying the boundary conditions. Then n* = 7~ - no satisfies a linear boundary 
value problem with homogeneous boundary conditions, i.e. 

L?[n*] = Q* &-9[7~0], (16) 

in the interior with 4[7r*] = 0 on the boundary. A Poisson equation of this type 
can be reduced to an ordinary second-order differential equation by expanding 
the variables in eigenfunctions. It will be seen later that this feature of the con- 
tinuous Poisson equation has a most useful analogy in the finite difference 
formulation. 
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3. The grid system 
To turn the above equations into a practical scheme of computation, they are 

expressed in finite difference form on the following grid arrangement. The 
pressure and temperature variables which are defined at  the same points form 
the basic grid. The velocity components u, v, w are all defined at different points 
interlacing with the basic grid. 

In a horizontal cross-section the n, T points are distributed around radial 
circles. The zonal velocity points lie on the same circles midway between the 
n points (figure 2). Radial velocity points lie along radii through then points and 
are located midway between the n points. Finally, w points lie on the vertical 
lines of the n grid, midway between points (figure 3). The physical boundaries 
are placed so that they fall halfway between the two extreme n points. 

The continuous co-ordinates ( r ,  $, z) are thus replaced by the discrete grid 
system (I, J, K )  such that 

(17) 

r = u + ( l - $ ) A r  (I = 1 , 2 , < . . , L + l ) ;  

$ == ( J - l ) A $  
Z =  ( K - $ ) A z  

( J =  1 , 2 ,  ..., M + l ) ;  
( K =  1,2, . . . , X +  1) 

give the co-ordinates of the n points. The grid lengths between n points are 
given by 

Ar = (b-a)/(L- l), A# = @/(H - l), Az = d/(X-  1). (18) 

The angular size of the annulus CD is normally 277 but the formulation will treat 
the general case by assuming periodicity. The interlacing grids of the velocity 
points can be similarly indexed. 

The interlaced grid system presents little problem in establishing the finite 
difference equations and appears to be over-all the most consistent arrangement. 
The discrete fluid element centred on n and bounded by the u, v, w points forms 
the fundamental fluid element for which most concepts and properties such as 
mass conservation apply. The grid system as a whole is uniform and symmetric as 
far as point arrangement goes, i.e. there is no preferred direction. There is of 
course a geometrical variation. 

4. The M t e  difference equations 
Having divided the fluid into small elements by a series of grid points which 

are spaced at  distances of Ar, Az and rA$, the time variable is next split up into 
increments of At such that t = r .At where r denotes the current time-index. To 
exhibit the finite difference equations and their multi-dimensional properties 
in compact form, we define the following difference and averaging operators in 
the notation of Richardson (1922) and Shuman (1962), 

(19) 
&xq [q(x+~Az)-q(x-frAz)]/Ar, 
qX [ q ( ~  + $AX) + q ( ~  - +Az)]/2, 
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FIGURE 2. Grid arrangement in the horizontal. n, T points are the centre of basic fluid 
elements. Broken lines indicate the periodic boundaries and heavy lines denote cylinder 
walls. x , pressure, temperature point; 0, radial velocity point; A ,  zonal velocity point. 
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where q represents one of the field variables, z ( e r ,  4, z, t )  one of the co-ordinates 
and Ax is the discrete grid interval of x. The bar and delta operators form a linear 
commutative and distributive algebra for which various operator rules and 
identities can be constructed, e.g. 

~z(P,!7,) = 4iz%42+9Zh.  

For further examples and applications the fundamental paper on numerical 
methods by Lilly (1964) should be consulted. 

In this notation, a set of finite difference equations can be established in 
the following form: 

where 

These expressions and operator notation must be interpreted with respect to 
the grid-point of the variable under consideration. The centred time differencing 
is for the level 7 so that the predictions yield the variables at  level (7+ 1). The 
non-linear, rotational and pressure terms are evaluated at the central level T 

whereas the diffusive terms use the non-central (7- 1) level, denoted by the 
subscript 'lag'. The continuity equation (24) applies at a n point and is valid for 
the fluid unit surrounding that point. The averaging in the equations is necessary 
to provide variable values a t  grid points where the variables are not explicitly 
defined, e.g. in the buoyancy term, averages two neighbouring T values to 
give their mean as the value at  an intermediate point which happens to be the 
w point being predicted. Through using an interlacing grid system the amount of 
averaging of this type is reduced to a minimum thus improving accuracy. 
Furthermore, the continuity equation has a unique exact form which can only 
be achieved by such a grid; this uniqueness is essential for deriving the Poisson 
equation. The only disadvantage occurs in the rotational terms, where products 
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such as uv must be averaged as u and v occur at different locations. Defining 7r and 
T at the same point is desirable for consistency with the equation of st.ate 

P = P o [ l - P I .  

The variables u, v, w and T may be obtained by marching equations (20)-(23). 
To obtain 7r and satisfy continuity, a Poisson equation must bederived. To achieve 
this, suppose for convenience that the prediction equations can be written as 

(26) S&?= - ( l /r)8+7r+GU, 

where G = (GV, G U ,  G W )  represents the non-linear, viscous and rotational 
terms. Substituting these equations into the continuity equation (24) gives 

(27) 

i dt;i;" = -S,n+GV, 

= -S,n+GW, 

V2r = V . G ,  

where 

and 

Solving (27) during each time-step provides the values of 7r needed to complete 
the marching process. (See Q 5 b for minor modification.) 

In  executing the calculation the components of G, (26), can be evaluated from 
the variables of the previous time step. Forming the divergence of G,t  the 
Poisson equation (27) on solution gives values of 7r. Using these values of G and n, 
the variables u, v, w and T at the next time step can then be directly evaluated. 
The use of the same numerical values of G in the Poisson and prediction equations 
guarantees consistency and satisfaction of the integral constraint (§ 6 e )  for the 
existence of the solution. The boundary conditions then yield the external values 
of the variables. 

Reasons for preferring the above finite difference forms (mainly because of 
stability requirements) and other detailed features of the numerical scheme will 
be discussed in the next section. 

5. Remarks concerning the finite differencing 
In this section we will examine the different types of computational instability 

inherent in finite difference forms of the Navier-Stokes equations and how they 
can be neutralized by the chosen system. 

(a )  Instability of the convection terms 
Consider an equation representative of the convection process: 

srqt + q S Z p  = 0. (29) 

The linearized form s,qt+qos,qz = 0, ( 30) 

t This must be done numerically from previously calculated G values and not by 
differencing the individual terms of each component and calculating those. 
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has a well known partial instability (for instance, Richtmyer 1957) which can be 
suppressed by realizing the Courant-Friedrichs-Lewy criterion that the time- 
step increment be limited to At < Ax/lqol. 

The Courant-Friedrichs-Lewy criterion alone does not suffice for the integra- 
tion of the non-linear equation (29) and the computation eventually becomes 
unstable. The instability arises after numerous time-steps when the appearance 
of large truncation errors causes an almost explosive increase in the total energy 
of the system. Phillips (1959) has shown that uncontrolled aliasing (Blackman & 
Tukey 1958) causes this instability. Aliasing happens when waves that are too 
short to be resolved by a given set of grid points are misrepresented by long waves 
(Hamming 1962). The convection term can produce this phenomenon because 
the non-linear interactions combine certain frequencies to produce higher fre- 
quencies which lie outside the limit of resolution set by the grid. Thus non-linear 
instability or quasi-non-linear instability (Miyakoda 1962) has its origin in space 
truncation errors. 

However, Arakawa (1966) has shown that it is possible to devise forms of the 
convection terms for which non-linear computational instability does not occur 
because the aliasing is controlled. If the convection terms are written in the 
total derivative form 

as they are in equations (20)-( 23), some of the integral constraints on quantities of 
physical importance, such as conservation of kinetic energy and the quadratic 
quantities u2, v2, w 2 and T2 can be maintained for the finite difference forms 
(u”)$, (w2)2, ( l / r )  (K2P and T2.  In  this situation non-linear instability can not 
occur. This follows from the fact that, if the square of a quantity is conserved 
when summed over all grid points in a domain, the quantity itself will be bounded 
at every grid point for the entire integration period. Aliasing can still exist in the 
stable conserving scheme, appearing perhaps as a phase error or as a distortion 
of the energy spectrum. However, the total energy and thence the average scale 
of the motion are free from aliasing errors. 

In  summary, the stability of the convection terms can be ensured by (i) meeting 
the Courant-Friedrichs-Lewy criteriont and (ii) by expressing the finite differ- 
ence formulation in total derivative form to guarantee its satisfaction of the 
equivalent to Gauss’s divergence theorem (see Bryan 1966) and the consequent 
conservation of a variable and its quadratic. 

&x(qz * 4r”) ’ 

(b)  Weak instability of time differencing 
Whereas the above instability is due to the convection term, the instability of this 
section is due to the prediction term. An equation such as 

s t$+Sx(qz .p )  = 0, (31) 

involves variables at three time levels, which indicates that the first-order con- 
tinuous equation has been raised to a second-order difference equation. This 
introduces a non-physical computational mode into the solution (Platzman 
1958). The mode takes the form of an oscillation, with respect to time, about the 

t Where pa now represents the maximum possible q. 
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true solution. The amplitude of the oscillation grows slowly with time and 
eventually leads to the formation of two separate solutions at the even and odd 
time steps. Hence the resulting instability is referred to as ‘time splitting’ 
(Henrici 1962). 

Integrations of an equation similar to (31) over a long period of time show 
that the solutions correspond very accurately to their analytical counterparts 
provided the instability remains small (Lilly 1965). Furthermore, the kinetic 
energy values indicate that time splitting occurs and can amplify considerably 
before the average kinetic energy deviates from a constant value. After several 
hundred time steps the instability dominates the solution and the kinetic energy 
deviation arises. 

On the other hand, a study of methods other than the central time differencing 
displayed an undesirably strong damping of the kinetic energy (Kurihara 1965). 
Thus the central differencing method is preferable provided the weak instability 
can be controlled. This can be done simply by periodically averaging the variables 
over adjacent time steps (Arakawa 1965, private communication) and restarting 
the calculation with the averaged values. The computational mode is not elimi- 
nated but is suppressed. 

The continuity divergence variable 9 exhibits an instability of a type similar 
to that described above for the velocity and temperature variables. If the Poisson 
equation (27) can be solved exactly, there is no problem. In reality, however, 
a degree of round-off error is inevitable even with the trigonometric method. 
This in turn creates an artificial divergence which can lead to computational 
instability. A similar behaviour was noted by Smagorinsky (1958) in a comparable 
computational system devised and rejected for integrations for the general 
circulation of the atmosphere. 

It was found that this computational difficulty can be overcome by using a 
computational strategem; the round-off divergence at  one step is used as a 
correction term in the forcing terms of the Poisson equation. Thus instead of (27) 
we take the original divergence equation, i.e. 

Since the divergence in the computation at  a given step (T - 1) is not exactly zero 
( 9 7 - 1  0 )  but that at  (T+  1) ought to be zero (g7+l= 0 ) ,  (32) is written 

m2n = V . G + (gr-l/2At). (33) 

By solving this form of the equation and repeating the process of inserting the 
round-off error into the forcing function it is found that 9 does not grow and 
remains bounded at  the order of the round-off errors. Harlow & Welch (1965) 
introduced this technique of controlling 9 for the case of two-dimensional flow in 
which relaxation procedures are used to solve the Poisson equation. 

A computation with gr instead of 9 - l  in (33) gives unstable 9 growth, 
indicating the sensitivity of the stability requirement. The growth of 9 in forms 
of the Poisson equation other than (33) is most likely due to the centred time 
differencing and the associated presence of a weak instability of the ‘splitting’ 
variety. 
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(c)  Instability of the diffusion terms 

The diffusive terms in the prediction equations have a well-known strong partial 
instability (for instance Richtmyer 1957). This can be suppressed by limiting 
the time step to At < ( A Z ) ~ / S V ,  At < ( A x ) ~ / S K  whichever is the lesser. 

( d )  Formulating the friction terms 

If the conventional form of the friction terms, i.e. vT2v had been used in the 
equations leading to the formulation of the Poisson equation (32), then the 
friction terms would have made a round-off contribution of vv 29 to the forcing 
function. To avoid this feature in the finite difference system the friction terms 
must be expressed directly in terms of the vorticity, i.e. as VF = - vm A w. In 
terms of components this is expressed as 

(34) 1 F*(v) = 4 7  - ( l / r )  4$c7 
I * ( u )  = 4c-4t7 

H*(w) = &&- ( 1 f d  M y ) ,  

where g = (l/r)84w-6,u, 7 = 6zv-STw, = ( l / r ) ~ ~ ( r u ) - ( l / r ) ~ ~ v .  (35) 

Substituting (35) into (34) yields the expressions of (25). Furthermore, from (34) 
it follows that VF, the contribution to the Poisson equation, is identically zero. 
If formulations other than that using the vorticity definition are used, this 
identity does not hold because of truncation problems in differencing geometrical 
factors, 

The vorticity formulation also provides a convenient form of the boundary 
condition on the normal pressure gradient. In this condition the friction must 
be evaluated at  the boundary and, whereas in the standard formulation thiswould 
involve variable values at  -Ax outside the boundary, the vorticity method 
involves values at  only - $Ax outside. This improves accuracy. 

( e )  Formulating the rotation terms 

The finite difference formulations of the rotation terms in the v, u equations (20), 
(21) are interrelated because of the need to maintain a zero net contribution from 
them to the kinetic energy. However, some arbitrariness exists in the way the 
rotational terms can be set up because of the need to average variables on the 
interlaced grid system. It can be shown, by algebraic manipulation (for an 
example of which see Lilly 1964), that the forms of (20) and (21) have the desired 
property of conserving kinetic energy and angular momentum. The rotation 
term in the v equation is essentially a single term originating in the kinematical 
acceleration (rQ + u ) ~ ,  (with the Q2 part neglected), and has been treated as such. 

(f)  The boundary conditions 
The boundary conditions express the state of the fluid at  the boundaries. Com- 
putationally these conditions when expressed in finite difference form must 
provide definitions of the variables at the boundaries or at points just outside 

47 Fluid Mech. 37 
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the boundariest and must also maintain the finite difference properties such as 
energy conservation for the fluid near the boundary. The external values are 
needed for evaluation of the prediction components G, (26 ) ,  at points adjacent 
to the boundary. For a staggered grid, the simplest and most obvious form for 
the boundary conditions also appears to be the best for conservation and 
consistency. 

Thus in annulus convection, for example, the conditions are as follows: (i) the 
base is an insulated non-slip surface for which a suitable form for the boundary 
conditions is 

I w = Gjz = U" = 6,T = 0, 

applied at z = 0; (ii) the upper fluid surface is an insulated free slip surface with 
conditions 

w = S,ZL = 6 , ~  = J,T = 0, 

6,n = pgP, (37) 

applied at  z = d ;  (iii) on the non-slip sidewalls, the conditions are 

2, = $ = g = 0, 

and = T,, Tb applied at  r = a,  b respectively. 

(9) Truncation errors 

Truncation errors of the prediction equations are of order   AX)^ or (At)2. 

6. Details of the Poisson solution 
The general principle behind solving an elliptic equation (15) with inhomo- 

geneous Neumann boundary conditions was discussed earlier. The details of 
solving the particular finite difference equation (27) rapidly will be presented 
in this section. 

(a)  The first step in solving equation (33) which we write as T 2 n  = Q,  is to 
find a function no which satisfies the boundary conditions cYnn = BC. One such 
function can be formed by setting no = 0 at  all interior pressure points and 
setting no = & BC.  An a t  points outside the boundary. The formation of V2n0 
for modifying Q is restricted to points lying just inside the boundary at  which 
Q* = Q T BClAnf while in the remainder of the interior Q* = Q holds. The 
problem is then to solve V2n* = Q* with S,n* = 0 where n* = n-no and 
Q* = Q - Y j 7 2 ~ o .  

7 External points are a computational device to introduce the boundary conditions 

1 With minor modification factors at T = a, b. 
and to avoid having to redefine the finite difference equations near the boundaries. 
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( b )  The boundary conditions on 7 ~ *  are met by expanding 7 ~ *  in a finite eigen- 
function series. In the $-direction, a periodic trigonometric expansion suits 
the periodic boundary conditions whereas for the vertical direction cosine 
expansion suits the condition of a zero pressure gradient. Thus we expand 7 ~ *  

into two series of harmonics (rather than into a single series of double harmonics, 
which is computationally slower) 

M - 2  

a=O 
n* = x P,H,(J), 

where a, p are indices for the periodic and cosine coefficients respectively. The 
eigenfunctions are 

H,(J) r,. (M2 __ l)d.cos (S. (J-1)) for a = o , 1 , 2  ,..., ~ ( M - I ) ,  

Ha(J) E __ .s in(&(J-l)  ( a-- Mi1)) for a = + (  M - l ) + l ,  ..., N - 2 , J  

(39) 
whereJ= 1,2, ..., M a n d I ' a = 2 - 4 - f o r a = O a n d a = ~ ( M - 1 ) ~ b u t  F a =  l fo r  
other a. Also 

where K = 2,3,  .. ,, N .  Fa = 2-4 when p = 0 but is otherwise equal to unity. 
This non-standard cosine expansion allows for boundaries that lie between grid 
points; Hp(K= 1) = Hp(K=2) so that SzHp = 0 at z = 0 reflects this. The 
number of coefficients in each series equals the number of grid points in the 
corresponding direction so each series uniquely matches the data (see e.g. 
Lanczos 1961, p. 89). 

Expanding rr* and Q* in series and substituting into (27) gives a second-order 
difference equation for the Coefficients: 

where 
(I/') JArsTPap) - (A, + (halr2)} Pap = QaB, 141) 

for p =  O , 1 ,  ..., N - 2 .  2 
h 

( c )  To solve the ordinary difference equation (41) subject to the boundary 
conditions STPap = 0, it  is written out in full as 

- A ,  (Pap)I+I+ B, (Pap), - CI (pmp)~-I = DI,  (42) 

t M is restricted to  odd integers. 

47-2 
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where 

G. P .  Williams 

The boundary conditions are (PaB)I=l = (PbB)I=2, 

and (Pap)I=L+l= ('ap)I=L* 

(d )  To avoid exponential solutions in solving (41 )  the recursion functions 

with El = 1, Fl = 0 (for instance, Richtmyer 1957). Substituting into (42 )  gives 

EI = 1/(BI-cIEI-i), FI = EI(DI+cIF'-i) 

which can be calculated for I = 1 to I = L (EI is a fixed function and need only 
be calculated once). The boundary condition gives (PaB)L+l = FL/( 1 - EL) and 
thence all Pap may be calculated for I = L, L - 1 ,  L - 2 ,  . . . , downward to 1 using 
(43) and the known EI, 3''. 

(e) When a = p = 0, then A, = A, = 0 and the above recursion scheme no 
longer works. Equation (41)  reduces to (l/r)8r(r&.Poo) = Qo0 and the conditions 
&Po0 = 0 on r = a, b make it degenerate. A study of this degenerate mode reveals 
the nature of this type of Poisson equation and the constraints that are necessary 
for solutions to exist. This equation has a solution provided 

L 
QoorAr = 0 .  

1 = 2  
( 4 4 )  

To prove that this holds we recollect that Q = V .G and S,T = Gn; thence 
Q* = V . G*, where G* = G -  m m o  is zero on the boundaries. Thus 

L L 

1 = 2  1 = 2  
C Q * =  C V . G * = O  

indicates the veracity of (44). This constraint is also a reflexion of Gauss's 
theorem, i.e. in the continuous 

L ,- L L 

J V2mdr =J Vn.ds;  J Qdr = J G.ds, 

(V2n-VG)dT = (Vn-G).ds = 0. s s so that 

The boundary condition on the normal pressure gradient must therefore be con- 
sistent with the basic equations; in finite difference form Q must be formed from 
the components of the prediction equations. This places a constraint ( 4 4 )  on 
the finite difference formulation. The constraint arises only in the zero-zero 
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coefficient because it is identically satisfied by the trigonometric functions H,, 
HB in the non-zero modes. The actual solution of Po, can be obtained by a direct 
marching of the equation, with the upper boundary condition being met im- 
plicitly by virtue of (44). The absolute value of Po, is undefined as a consequence 
of the fact that 7~ can only be determined to within an arbitrary constant. 

(f) Trigonometric synthesis of the Pup yields the pressure m*. In the actual 
computation the only trigonometric transforms performed are this synthesis, 
equation (38), and the analysis of the forcing function &*, i.e. 

(9) A method for performing the trigonometric transforms (38) and (45) in 
a rapid fashion by reducing the amount of multiplication in these summations 
is given in the appendix. This is achieved by taking advantage of the symmetry 
properties of the trigonometric functions. By this device the time needed to 
solve the Poisson equation can be reduced so that it occupies less than 4 of the 
computational time. 

(h) We note in passing that in our choice of eigenfunctions we avoided using 
the Bessel functions associated with the radial co-ordinate. Although this choice 
is arbitrary the use of the E ,  F recursion scheme in the r-direction is computa- 
tionally advantageous compared with using Bessel functions. 

7. Integral properties 
An apparent simulation of physically observed characteristics does not in 

itself form an understanding of the flow. Diagnostic integral techniques provide 
a very sensitive measure of the mechanical similarity of model to physical entity 
and together with an analysis of component terms (Williams 1967) could pro- 
vide the type of insight from numerical studies that is normally derived from 
analytical studies.? For, although numerical methods are capable of accounting 
for non-linearity and other complexities, they do not yield an immediate under- 
standing of the mechanics involved. However, in the integrated form of the 
equations the non-linear effects vanish or are simplified and this makes the task 
of their interpretation easier than that of the full prediction equations. The 
balancing of the energy components also provides some confirmation of a proper 
execution of the computation. The use of different integral expressions for 
describing the mechanics has been an important technique developed in recent 
years for numerical solutions in meteorology (see e.g. Smagorinsky, Manabe & 
Holloway 1965). The type of integral that is of use in analyzing a solution varies 
from problem to problem. 

The simplest integrals that are useful diagnostic and interpretative tools are 

It is to be emphasized that this paper deals only with how numerical solutions may 
be obtained. It is equally important to develop methods of analyzing the solutions. 
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the total or global integrals for kinetic and potential energy; in the continuous 
form these are respectively : 

E - 1 2  g - (z(u +v2+w2) ) ,  Ep = (-&zT), 

where 

Defining conversion and diffusion integrals as 

(?K = v (vP(v) + ul(u) +wH(w)) )  

Ep = -&K(zV2T), 

the integrated forms of the prediction equations (1) to (4) are 

(Ep)i = -EK : E p + ~ p .  

It is only a question of lengthy algebra to show that the finite difference equa- 
tions also yield discrete energy summations and equations of the same form. 
The use of the conserving form for the convection terms ensures this and that 
the conversion rates of potential and kinetic energies are equal. 

8. Results 
The veracity and feasibility of the computational method lies in the demonstra- 

tion of its practicality. Most numerical studies of this type are limited or com- 
promised by the amount of information that the computer can handle. The 
method has been programmedfor a UNIVAC 1108 c0mputer.t When the program 
utilizes only the immediately available core storage the computation is rapid 
(less than 2 sec per time step) but is limited in resolution to a maximum of (14)3 
points. For higher resolution it is necessary to use limited access drums for 
temporary allocation of the variables and the programming becomes highly 
complex. The program is set up so that during the marching of the variables 
only three (4, z )  planes of the variables need be placed in core storage a t  a given 
time, the remainder being held on the drums. By using drums with a storage 
capacity of approximately 1.4 million words and a core storage of approximately 
50,000 words, resolutions of up to 60 x 34 x 34 can be considered. 

I n  table 1 the computation times per step for different resolutions are shown. 
The maximum time is 96 sec and although calculations with such a resolution are 
time-consuming it does represent an upper bound for the method; a bound which 
can be reduced with advances in technology or improvements in programming. 
Comparing the low resolution all-core storage program with the drum storage 
method a t  a ( 14)3 resolution, the drum method requires 0.77 sec longer because 
of the drum transfers. This inefficiency is less at higher resolutions. The Poisson 
section occupies only 16 % of the computation time in the core formulation but 
about 23 yo in the drum formulation, for all resolutions. 

(1967) produced similar results. 
t A comparative calculation using this method and the method described in Williams 
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The method discussed above is being used to study annulus convection and 
other fluid dynamical systems. As such solutions and their analysis are of an 
extensive nature, the physical aspect of the solutions will be presented separately 
in a forthcoming paper. 

In  figure 4 we present merely an outline of a solution for the so-called steady 
wave flow of the Rossby regime of annulus convection. Starting from an initial 
condition of isothermal solid rotation, integration to a steady state was made. 
The configuration parameters are a = 2 cm, b = 5 cm, d = 3 cm, AT = 5 "C, 
s1 = 0.8radsec-1 and the physical parameters for water at  20°C are 

L + 1  
14 
14 
14 
22 
34 
60 
38 
44 

Resolution 
--h---_L-7 

M + 1  N + l  
14 14 
14 14 
42 14 
22 22 
34 34 
34 34 
38 34 
38 34 

Time per 
time step 

(set) 

2.00 
2.77 
7.70 

11.4 
51.7 
95.7 
66.0 
76.6 

Time on 
Poisson sect. 

(see) 
0.32 
0.63 
1.80 
2.59 

12.4 
22.7 
16.0 
18.2 

Percentage 
on Poisson 

16 
23 
23 
23 
24 
24 
24 
24 

Method of 
storage 

Core 
Drum 
Drum 
Drum 
Drum 
Drum 
Drum 
Drum 

Table 1. Computation time per time step and method of storage 
are shown for a wide range of resolutions 

v = 1.008 x 10-2cm2sec-17 
The Rossby and Taylor numbers are 

K = 1.420 x 10-3cm2sec-1, p = 2.054 x 10-4("c)-1. 

nq E (/?gATd)/[@(b - u ) ~ ]  = 0.525 and 7r5 = 4Qz(b - ~ ) ~ / ( v ~ d )  = 2.041 x 106 

respectively. The computation was made with a resolution of L = N = 33 and 
M = 37 for a CD = 27r sector to ascertain that wave-number 5 evolves. The calcula- 
tion was repeated with @ = 2n/5 and the resulting steady-state solution is 
presented in figure 4. 

The horizontal patterns of the pressure variable at  the free surface, and in the 
Ekman layer on the base, are illustrated. Also shown are the vertical distributions 
of temperature and zonal velocity at the trough and ridge extremities of the 
surface wave pattern and similar distributions for the zonally averaged fields 
of temperature, zonal velocity and.stream function $. The stream function for 
mean radial-vertical motion is defined as 

where [ ] indicates zonally averaged variables. 
The predominant features of the solution are (i) the formation of steady wave- 

number 5 which rotates in the direction of s1 (anticlockwise) at a rate of 52/25 
rad/sec relative to the container; (ii) the triple cell system of the averaged 
meridional motion and (iii) the mainly positive flow of the zonal motion. Negative 
zonal velocities exist in the region of the base near the inner and outer cylinders; 
(iv) the different curvatures of the vertical temperature contours in the trough 
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(ii) 

FIGURE 4(a). The horizontal distribution of pressure (i) in the Ekman layer near the bottom 
of the fluid (z = BAz) and (ii) near the top of the fluid ( z  = d- 4Az). The absolute maximum 
and minimum pressure values are for (i) -0.3559 and -0.6876 cm2 sec-2 and for (ii) 
1.8174 and 0.6870 cm2 set@. Note that the wave in the lower part of the fluid is 18" in 
front of the wave in the upper part. This phase difference is $ of a wavelength as in Eady's 
theory. 
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0.0 , 1 I I 

0.0 0.5 

r’ 

(iii) 

9.’ 

(ii) 

0 

FIGURE 4 ( b ) .  The steady-state contours of the vertical distribution of the zonal velocity 
at (i) the trough and (ii) the ridge and the temperature at (iii) the trough and (iv) tho 
ridge of the surface wave. In  all diagrams each variable is normalized with respect to its 
maximum and minimum values. The normalized maximum and minimum have the 
respective values of 1.0 and 0.0 and the other contours are at intervals of 0.1 (or 0.2 in 
figure 4(a) ) .  The absolute value of a given contour of, e.g. u may be determined from t,he 
relation u = u min + contour value . x * (u max - u min). The absolute maximum and 
minimum values are 22.5, 17.5 OC for T and 0.3522, - 0.1321 em see-’ for u at the trough 
and 0.4601, - 0.1573 cm sec-l for u at the ridge. The broken line indicates the contour 
of zero zonal velocity above which the velocity is positive, i.e. in the same sense as the 
rotation, and below which it is negative. The non-dimensional radial co-ordinate 
r‘ ( r  - a) /@ - a )  commences at the cold inner cylinder (on the left of each diagram). 
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0.0 

00 65 
r' 

(iii) 

T #  

(ii) 

0 

FIQ~RE 4(c). The steady-state contours of (i) stream function and zonally averaged 
(ii) temperature and (iii) zonal velocity. The absolute maximum and minimum values arc 
0.01759, - 0.05347 cm3 sec-1 for +, 22.5, 17.6 "C for T, and 0.3027, - 0.1090 cm sec-1 
for u. The stream function arrows indicate the direction of the meridional flow. 
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and ridge and the linearity of the mean temperature field; (v) further analysis 
of the complete structure of the T, p and w waves to (be presented in the forth- 
coming paper) indicates phase and amplitude relationships similar to those of 
the classical Eady (1949) wave, suggesting that the wave flow is intrinsically 
a finite amplitude Eady wave. 

The author wishes to acknowledge his indebtedness to Mr Henry Stambler 
for programming assistance. I am also grateful to Drs K. Bryan and K. Miyakoda 
for valuable suggestions and to M. B. Jackson and D. J. Johnson for preparing 
the figures. 

Appendix. Fast trigonometric transforms 
A method for reducing the amount of computation time needed to perform the 

trigonometric analysis and synthesis in the solution of the Poisson equation will 
be presented. In  recent years, methods of performing trigonometric transforms 
rapidly have been devised by Cooley & Tukey (1965) and Hockney (1965). The 
alternative method to be discussed here is a variation of the method of Danielson 
& Lanczos (1942). Only periodic analysis will be dealt with and the obvious 
extensions are left to the reader. The method avoids the restrictions and the 
logical complexity associated with the programming of the Cooley-Tukey method 
and for the range of harmonics normally used ( < 60) is sufficiently rapid, affording 
an increase in speed of around 6.5 over the standard method of direct summation. 

An analysis by periodic trigonometric series requires the multiplications and 
summations of the following type:l 

I 41n- 1 
a, = f,.C,,, for a = 0 ,1 ,2 ,  ..., 2m; 

where 

i 
s=o 

4m- 1 

s=l 
b, = C f,.S,,, for a = 1 , 2 ,  ..., 2m-1, 

c,, = r, - COS--; S,, = - sin-- 
(:my Z (2y * z 

for s = 0 , l  , 2, . . . ,4m - 1 and f,, the function being transformed is periodic so 
that f4,,, = fo. The method to be described allows the evaluation of a,, b,  with the 
amount of multiplication reduced by a factor of 8. As multiplication is a time- 
consuming operation this reduction is most useful. The number of grid intervals 
M- 1 = 4m has been chosen to be a multiple of 4 in order to derive the full 
benefit of the symmetry properties of the trigonometric functions in the four 
quadrants of the circle. 

The reduction can be split up into three separate stages. 
t For convenience the notation of $ 6 b  is replaced by a simpler one. 
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(a,) Stage 1. Reduce the summation range from 4m to 2m 

This is achieved by dividing the analysis into an even function (cosine) and odd 
function (sine) analysis by taking the sums and differences of the original 
ordinates. Thus, forming? 

u, = f,.+f4m-,; v, = f,-f4m-, for r = 1,2 ,  ..., 2m-1 (A 2 )  

and uo = f o ;  uZm = f2,, and it can be shown by writing, e.g. 
2 m  4m-1 

a,= ( c + 2 ) f s c a s  
s=O s = 2 m + l  

and simplifying the second integral, that 
2m 

s=O 
a, = C uSCas for a = 0,1,  ..., 2m, 

2m-1 
b, = C vSSas for a = 1,2 ,..., 2m-1. 

s= 1 

(b )  Stage 2. Reduce summation range from 2m to m 

Forming the sums and differences 

for r = 0 , 1 ,  ..., m - 1 ,  

for r = 1,2 ,..., m-1 ,  

u,” = u, + UZrn-, 

u: = U.,-u2m--r 

v; = v, + v2m7 
4 = v, - ‘U27IL-r 

and u: = um, v; = v,,, and then by splitting the summation range as in stage 1, 
we can show that 

The numbers in the curly brackets are related by level. The double and single 
prime notation indicates variables with even and odd a values respectively. 

( c )  Stage 3. Reduce the a range from 2m to m 

(This reduction of the summations (A 6) and (A 7) can be ignored if a gain of 
4 rather than 8 is sufficient for the reader’s purpose.) 

The two coefficients a, and a2m-a contain two common series of alternate 
terms which differ only in sign. These series can be identified, defined and used 
to reduce the a range. Thus we can write: 

t The variables u, v, r are separately defined t o  those in the main text. 
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S o = 1 , 3 , 5  ,..., mox a = O , 2 , 4  ,..., mex 
So= 1 , 3 , 5  ,..., mo ) ( a = 1 , 3 , 5  ,..., mox 

where a; = C ("]Ca8, { 
s o  u s  

749 

where mox, mex are odd, even members of (m, m - 1) and mo, me are odd, even 
members of (m - 1, m - 2) respectively, where double and single primes on a,, b, 
indicate variables with even and odd s values respectively. 

To evaluate a,, b, the summations (A9) are used together with the folding 
functions definedin (A 8), (A 5 )  and (A 2). Although thenumber of multiplications 
needed to evaluate all the coefficients has been decreased by a factor of 8, the 
increased complexity of the summations reduces the net gain to 6.5. 
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